
1

1“ TECHI!TI’CAL I’UI!IIOEANDTJMS
~

~,!,
t ITA!?IOiT.4LXDV IS033.Y” CGIJNITTE3 I?OR “AXRONATJ!TICS 1

.

—..---.._..————

ITc. 1-041

Central Aero–HyiLr od.ynamicnl Institute

...____ -—-.—--. —

----



(
!1

I .. a .= .-_. >
~i!
~

f
>,/ NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS
l’}

1: .-——..—-
1~! TIICHNICAL MEMORANDUM’ NO. 1041
,+. - .. .

1
.-—-—--.—

TAIL BUFFETING*

1 By G.
1.

Abdra”shit ov

An approximate theory of buffeting is here=presented,
based on the assumption of harmonic disturbing forces.
Two cases of buffeting are co~~sidered: namely, for a tail
angle of attack greater and less than the stalling angle)
respectively. On the basis of the tests conducted and the
results of foreign iilvestigators, a general analysis is
given of the nature of the forced vibrations the possible
load limits on the tail, and the methods of elimination
of buffetin~.

INTRODUCTION

The term lr’buffetingl’in its broad sense is applied
to the forced vibration-s of any parts of the airplane
under the aerodynamic action “o-ftiie wake in which such
parts are sittiated, though in gene”ral aeronautic practice
the term is restricted to this type’ of vi-bration of the
tail surfaces under the actio)i of the disturbing wake of
the wing, the phenomenon occurring under certain flight
conditions. Depending on the values of the parameters
that characterize the wake, the tail is subjected to addi-
tional dynamic loads of various kinds which may lead to
its failure or otherwise render normal operatioil of the
airplane difficult.

The buffeting problem first took on a serious aspect
after the well-known accident of the Junkers airplane at
Meopham. The unusual circumstances of the accident led
scientific organizations in England ap.d Germany to under-
take detailed iilvestigations as to the possible causes
that may have brought it about. The English conducted
extensive laboratory investigations and arrived at the
conclusion that the most probable cause of the accident
was buffeting of the tail. In these investigations on
schematized models of the airplane it was accurately es-
tablished that at large angles of attack of the wing the
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. .
tail situated in” the aerodynamic wake of the wing vibrates
intensely, the amplitude of the vibration increasing with
increase in the velocity.

A detailed investigation of the place of the a;cident
showed the presence of large rising air currents and the
following explanation was therefore given of the causes of
the accident: The airplane, flying horizontally with
great velocity, suddenly entered a region of strong rising
gusts as a result of which there was a sharp increase in
the angle of attack with the formation of flow separation
at the wing. The tail located in the wake was subjected
to intense forced vibrations which thus brought about the
accident.

To the investigation of this accident were,also de-
voted the paners of a group of German investigators under
the leadership of Blenk (reference 1). The latter con-
ducted laboratory and flight investigations and also de-
tailed dynamic investigations of the same type of airplane
in the hangar. The laboratory investigations showed that
it was e,ntirely possible for the airplane to enter the
buffeting state; but in actual flight, except during a
steep glide, buffeting of the tail was not observed even
once. For this reason,, after analyzing all investigations,
Blenk arrived at the conclusion that the accident of the
JU 13 could not have been due to buffetipg. .

The importance of the investigations of Blenk lie in
the test procedure, which he consistently employed. He was
the first to apply the moving picture camera .to investi-
gate buffeting on the airplane in flight. A high-speed
camera wasmounhd in the pilotts cabin and enabled. the.
simultaneous recording of the motion of the tail surface
tip and of a silk string placed ahead of it. Figure 1
shows a part of the film, taken during a steep glide on
the wing when the tail begins to buffet. On carefully ~ .
studying the photographic record, a rel-ation ,may be estab-
lished between the fluctuation of the tail surface and the
silk string. The fundamental conclusions from these tests
of Blenk are the following:

‘1. The -tail surfaces at large angles of attack of the
wing enter, a ,region of vortices springing” from the inters-
ection of the wing and fuse.1.a.ge,and in all these cases
vibration of- the tail is observed; the vortices arise at ‘
both sides of the fuselage”and usu~lly in an unsymmetric
manner. The. vibrations of the tailare of an irregular... .
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character but large amplitudes, as a rule, are-rare and
“continue only’for a very short time:

. ~. Regular periodic vibrations of.the tail surfaces
are also entirely possible. For this reason, the possi-
bility of entry into a resonance condition constitutes a
real danger.

3. The amplitudes ’increase very slowly wit!h.the ve-
locity and do not attain their maximum values at any def-
inite velocities.

As will be shown in what follows, not all results
obtained on the Junkers airplane tests may be generalized
and accepted without any reservations, assuming all con-
clusions as irrefutably proven. Even so, the work of Blenk
is the most t“horough in this field of investigation.

In 1933 two papers devoted to buffetiilg investigation
appeared by Duncan (references 2 and 3). This author
studied tl..evibrations of an elastically hinged IIdetectorll
having the form of a stiff airfoil attached at its root to
a streamline base niece. It should be said that such a
scheme, suitable for the determination of the frequency,
cannot give the corresponding amplitude of the acting
forces, aad this is one of the chief defects of this method.
Moreover, the detector cannot vary its angle of attack.

In 1934 Hood (reference 3) carried out wind tunnel
investigations on the elimination of buffeting observed in
flight of a given airplane. Similar flight investigations
were conducted by Biechteler (reference 4) in Germany.
This completes essentially the fundamental literature on
buffeting.

In the routine testing of .airtilanes the ‘buffeting
pro-Diem is sometimes practically encountered. At the pres-
ent time a large number of very sircple devices are already
available for the elimination of.buffetilig. ‘ I_t’.should be
pointed out, however, ‘that these devices are based only on
a qualitative estimate of the phenomenon,atid the quantita-
tive problems involved are not even approximately solved.
The difficulty of the’”problern lles”in the fact tha-t the
actual nature of the aerodynamic wake behind bodies and

; the laws of the dynamic processes that may occur in th”e
wake have not yet been established. From this fact follows
also the impossibility of an exact determination of the
magnitude of the forces required for making the tail unde~go

—
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forced vibrations. The questions of the viscosity of th”e
fluid and the nonstationary character of it,s.rnotion,which
factors in the usual applied aerodynamics of. the airplane
may often be neg~e”cted, here assume predominating impor+
tance.

The complete solution of. the. buffeting problem thus
embraces~ as yet!. unsolved aerodynamic problems. Ior this
reason, it is necessary to seek indirect methods which,
while not encompassing the problem in its entirety, make ,
it possible to determine states which are critical as re-
gards accidents. The present paper is devoted to an ex-
position of these critical cases.

NOTATION
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flow velocity

lift force

tail chord

time

angle of attack of tail

angle of attack of wing

critical (stalling) angle of” attack of tail ,surface

critical (stalling) angle of attack of wing

derivative of lift coefficient with respect to angle
of at-tack

derivative of moment of aerodynamic forces about the
elasticity axis of the tail with respect to the
angle of attack

angular frequency of the disturbance forces
.-

num’ber .of vibrations per second - ..-

‘1) half span of tail

EI stiffness of tail in bending
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..GIP ‘“”stiff ne-si of tail in torsion
., —. .- .-

Unit”masg of tail
.- .,

m
1. .’

x~ distance of center of gravity from nose of profile

0’ distance of center of gravity from elasticity axis
at section considered

Im unit moment of inertia of tail surface with respect
to its stiffness axis

P density

Y deflection of tail surface at given cross section

e angle of torsion at given section

The x-axis is taken along the tail spen and the y-axis
at right an~les to it.

x. 50ME DATA ON THE WAKE BEHIND A BODY

/

A large number of papers have deait with the problem
of what occurs in the flow ‘behind a body. It is, however,
impossible at the prasent tima to point to even a single
gaper which might throw light on the problem of the wake
from the point of view of every-day practical needs. Al 1
of. these papers concern themselves mainly with regions of
very small Reynolds number; and. at tiifles,,rastrict them-
selves to resplts of:-purely .~isual observations.

. ... ,.,.
“ The behavior ‘of light particles moving; in the. flow

,,

about a body shows that there is no “a-DsOIUtely dead. region !
behind the body but tlia,ta complicated process of fluid

\

motion occurs. All bodies placed in such a wake are sub-
ject to vibrational motions. From the point of view of
the well-known Karman theory, this may be explained by the
periodic shedding of discrete vortices from the body, there-
by producing the same type of velocity fisld and also field
of force behind ,the body. In general, the buffeting theory
may be set up both on the “basis of ‘uure wave motion of the
fluid behind the body and on the basis of the vortex wakes
of Karman, both assumptions leading to the same results.
In the first case, it is necessary to”know the amplitude
and frequency of the wave and in the second, the frequency
and circulation of the individual vorticas. For this

——— . . , ,.,,.
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reason, without restricting ourselves to any definite-
scheme, we shall consider that ‘behind the bodies a vibra-
tion process takes place for which two fund~mental param-
eters must be known; namely, the amplitude- and frequen’gy.

The problem of the wave amplitudes or of the circu-
lation of the separating vortices is as yet unsolved.
With regard to the frequency,- a criterion has already been
established connecting the frequency of vibration with the
velocity. This is the Strouhal.number (reference 5) given

where

v is the number of vibrations perl second

b a linear dimension (for example the chord)

T the flow velocity

A large Dumber of investigations are concerned with
the determination of the Strouhal number. There may be
mentioned, for example, the papers by Strouhal, Blenlk,
I?age, Duncan, and others. The problem is to determine
the vibration frequency as a function of the velocity.
I’uildamentally, three methods are employed for this purpose:
Tile first is the acoustic method by which the intensity or
‘oitch of the sound of thin streamlined wires in the stream
is measured,. since it.has been found that the Ti-bration of
the wires is due to the periodic shedding of vortices from
it. This method was employed by Strouhal and later by
Blenk. A difficulty should here be pointed out which un-
avoidably leads to an error in the results; namely, the
requirement of very thin wires. The method requires using ..:
very thin’ wires in streams of very high velocity and, sep-
arating from the general sound produced that sound emitted
by the wire - considerations which lead to a very compli-
cated setup including various sound ailalyzers. The test,
moreover, often becomes very complicated if any external
body emits a sound of the same type as the wire, The sec-
ond is the thermal method, using the well-known hot wire
anemometer; this method being the one widely employed in
English and American investigations. In the flow behind
the body is placed a very thin heated wire which, under
the action of the.variable flow velocities, changes its
electrical properties, from which the frequency of vibra-
tion can be determined. Finally, the third method is
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that of measuring the frequency of the vibrations from
the behaviorof various bodies placed in th-e stream -
silk streamers, vanes, and so forth. By these methods,
fundamentally, were obtained the data.on the Strouhal
numbers for various bodies. We shall present some results
obtained by different authors.

Flate

rage (reference 6) investigated in detail the’ fl’ow
behind a plate and obtained the’ results given in the “’
table below:

Strouhal Number at Various Angles of Attack

for Flat Plate end Airfoil

I
————————-————--——..-———————.-——-——————-———

I
a /

~
Pl%te Airfoil

_————— —_—— ———-——_——..——————— ~ -——————&=.-

90 I 0.14G 0.15
60 .i5 I

I .154
5G I .15 15
45 I .~45 ! :148

I I40 1’ .148 [ .15’7

i>

i30
I

.153
I

.15
20 .164 .152

‘The measurements were made by the method OT the hot-wire
anemo~eter. The mean value of the Strouhal number of the
plate is ~qual to O. 148 for a kan~e-of~ angle of attack of
50 to 90 . Elenk (reference 7) gives for the plate St=0.18
where

b

Cylinder .

In the case of ihe cylinder the results of acoustic
measurements only are available in the literature, with
the single exception of the work of Relf (reference 8),
where the results from different methmds of.measurement
are combined and a curve of St against Re
(fig. 2).

is obtained
According to the results-of Relf, for the
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cylinder St = 0.18; but according to Blenk St = 0.207-.

Strouhal- gives, for the cylinder, a value which agrees -
with-t-hat of “Blenk.

.,

Some furthei? reaarks should be made with regard to
the Relf curve (curve II, fig. 2).’ ‘The numerical values
are not of special interest because they include only the
two extreme points of the curve and at the stalling por-
tion, two or three measurements that disagree with each

‘other are given. A comparison, however, with the drag
“:’curve (curve I) confirms the well-known fact in aerodynam-
/’};ics that the frequency of the vibration is associated with
/ the width of the wake and the latter, as is known, depends
; in turn on the position of the point of separation of the
: flow at the cylinder. The point of separation at Recrit
recedes .sh”arplyand >arrows the wake and therefore sharply
increases the frequency of the vibration so that if the
narrowing of the wake ‘is not taken into account and every-
thing is referred to the diameter, it is possible at
Re crit to obtain a discontinuity of the Strouhal number

as shown on the Relf curve.

Airfoil .

The ~apers of Fagej Elenlcl Duncan, and others are
concerned with the investigation of the Strouhal number
behind airfoil sections. The Reynolds number in these
papers does not exceed a value of the order of 200,000.
The results of I?age, after recomputation with. reference
to the projection of the chord on the plane perpen~icular
to the flow, give a value St = 0.15 for ~w = 24 – 90°.
These results are shown in the table above.

The same results are obtained by Duncan from his
measurements with a detector. The investigations of Blenk
gave for wing profiles the value – 0.21.

‘t –

Summarizifi6 all the above results, the following con-
clusion may therefore be arrived at: The results of direct
measurements of the vitirati~as of the flow give a Strouhal
number for the plate a~id airfoil equal approximately
0.148 to 0.150. Prom acoustic measurements for the cylin-
der St = 0.207, for the plate St =’O.18 and for the
airfoil St = 0.21. From these measurements one important
conclusion is derived; namely, that the value of the
Strouhal number, taken over the middle range of resistance,

-.
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practically has the same value for all bodies. This very
important fact greatly facilitates both the investigation
of the fundamental characteristics of buffeting and its
practical elimination. The extent to which these two
groups of values of St correspond to actuality will be
considered in detail in what follows.

The region of propagation of the distur”oed wake is
no less important for the problem of buffeting. The prob-
lems associated with the wake have been extensively treated
in tile literature. The fundamental method employed in ob-
taining the ,results is that of measuring the total h’ead
with a pitot tube, a boundary point of the wake being con-
sidered a point at which the dynauic pressure no longer
varies along thm normal to th- dir-ction of thp velocity,

The curves of f’ieure 3, taken from the paper by
Petersohn (reference 9), show that the downwash angle be-
hitid the wing increases up to aw cr and then with increas-

ing angle of attack begins to decrease rapidly and at a
certain defir~ite angle of attack entirely va~ishes. This,
as will be showri below, is of great importa~ice in the prob-
lem of buffetii~g.

Although the width of the wake as obtained from the
dynamic pressure measurements is satisfactory,to some ex-
tent , for a num-~er of problems arising in practice, this
is far from the case as regards the problem of buffeting.
The curves ~iven in the paper of Duncan (fig. 4) show that
the tail vibrates strongly beyond the wake limits obtained
with the usual pitot tube. The dotted curves in the figure
show the wake boundary behind the body obtained with the
pitot tube and the continuous iirie”sare those of equal buf-
feting intensity, that is, the lines for which the ampli-
tude of tail vibration has the same val’i~e. If, for example,
over the” entire iflne 1, the value of the amglitude is taken
equal tb,~~nity; then at line 2 it’has a,value by only 30
percent less than on the first. I,n‘general, on an actual
airplane the tail will always be,’ at angies of attack of
the wi~g above tbe stall, in-the region of influence of
the vortices shed from tk.e wing.

. ..
II. ACTION OF THE WAKE ON THE TAIL

We assume that in the wake behind the wing is situated
a second airfoil. The question arises how an airfoil so
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situate d.w.ill behave, what loads it will
what motions it will execute under these
answer to”these questions is fundamental

1041

experience, and
loads. The
in the theory of

buffeting. It follows immediately” from the asstimed vibra-
tory character of the wake that at each point of the region
behind the wing the velocity, “variable with respect to time,
gives rise to vertical velocity components ahead of a tail .
set at variable an~les of incidence. The latter give rise,
naturally, to variable forces and vibrational motion, of the
tail. To solve the problem of “mffeting, it is therefore
‘necessary to know the fundamental parameters of these forces, ,
~,that is, the frequency and amplitude. The problem of un-

‘1

steady motion of a wing in ‘a disturbed flow appears so com-
plicated that an attempt to solve it ia its general form
koids forth little promise at the present time. It is
therefore necessary to make a number of assumptions by
which the problem may be schematized without impairing its
practicality. We shall assume that the sta-tionary condi-
tion holds also for the case of buffeti~~; that is, we shall ‘
consider that the general motion of the tail relative to
the flow may be subdivided into a large nutiber of time in-
tervals within which the motion may be considered as steady. ‘
Otherwise expressed, at each instant af time the aerodynamic
forces are determined by the Joukowsky theorem. This is
equivalent to the assumption t-hat the lift curve of the air-
foil will, remain the. ,same as for steady motion. Tron the
assumed nature of the disturbing forces, it follows directly
that their maximum possible value is determined chiefly,
not by the. wake itself but by the wing subjected to it. It
is known that the lift on the wing may be increased only
up to a certain limiting value Cy max characteristic of
the given wing section. That is to say, an add-itional angle
of attack arising from the vibrational character of the
wake may increase or decrease the lift of the tail surface
dependi~ig on whether or not the totai angle of attack ex-

ceeds ‘he angle % cr= By taking for the amplitude of the
force the value corresponding” to Cy max we include the
most dangerous condition, the elimination of which ‘automat-
ically assures safety iy ali the other cases. We’shal’l
therefore ass-zme that under forced vibrations, the value of

Cy max of the tail remains constant. This assumption is a
direct consequence of the assumption of the stationary con-
dition of the flow. It follows that the character of the
motion will vary greatly, depending on whether the tail op-
erates below or above the stall region of the lift curve.
Ii-ithe latter case, as will be shown below, the vibrations
will be unstabie.



We shall take a very simple example - the case of
-purely bending vibrations. F?.am the theory of flutter
it is known that such type of vibrations will always be
damped, the ving itself acting to damp the motion. The
case is otherwise if the wing vibrates in the range of
the lift curve above the stall. Consider the schematized
lift curve (fig. 5). Let the tail surface move from any
position A to the nosition B with any velocity. The
re:ative velocity of the air will then be opposite to the
direction of motion of the tail surface. The resultant
flow velocity formed of the sum of the horizontal and
above-mentioned relative vertical velocity will- then form
a smaller angle with the tail surface than before, that is,
if t’he tail initially was at an angle of attack Uz then
in tile course of its motion to the position B the angle
of attack is decreased to the value a,. But in this case,
as is seen from the curve. the lift fo~ce increases, that
is, is directed along the motion of the tail, The same
result is o-otained for the motion of the tail to position
c. Thus the tail surface, operating in this ,range of the
lift curve, becomes unstable and hence the amplitude of
the forces is of importance for the buffeting problem only
in the range below the stall, since in the range above the
stall the vibrations vill diverge independent of the magni-
tude of the forces. It can be readily shown that the dan-
g;er of this type of buffeting for t’he airplane is real.
It is known that the downwash angle of the flow above the
stall decreases with increase in the angle of attack of the
uing and at a certaip angle of attack entirely vanishes.
The disturbing wake, traveling in the direction of flight,
immediately brings the tail surfa”ce beyond tbe stall be-
cause at cr is somewhat lower than % cr”

We shall con~id.er the simple case of the disturbing
forces acting according to the harmonic law. It should
be noted that the case of periodic disturbance forces is
the most dangerous of all pGssible cases, since such forces
may ~ive rise to any ampiitude of vibration and bring the
tail into a resonance condition, From this point of view,
it seems proper to start our consideration of ‘ouffeting
with the case of harmonically acting forces as the simplest
of periodic forces. We, therefore, shall set

where La i~the increment in the angle of attack produced
by the wake ahead of.the tail; and A its amplitude.

,,,, ,,-...,-, ,,,,..,. , ,,. . . .------
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Then

or

dP = !!.~ A sin @Tp V2 t(x) dx (1)
aa

With the above assumptions, the equation of mot-ion can be6
very simply set up. It is clear that the equation will
be linear nonhomogeneous, its left side being similar to
the left side of the equation of wing flutter (reference 10)
and on the right side will appear the distributed load due
to the disturbing forces. On this basis we shall consider
a few examples of possi”cle cases of buffeting when the tail
operates below the stall.

Case of Purely Bending Vibrations

The equatioil of motioil is of the form

This is the usual equation of the forced vibrations of a
beam of variable cross section with loads uniformly dis-
tributed along the Span.

Let EI = constl, m(x) = consta$ t(x) = const~ and set

The equation will then assume the simPle form

(3)

The integration of the nonhomogeneous and homogeneous
equations meets with the same difficulty; namely,, the
determination of the functions fn(x) of the problem by
which the solution of the nonhomogeneous and homogeneous
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nroblems is developed in a series of the form

where f(x) are the functions characterizing the form
of the vibration of the tail surface and 5(T) gives the
change in deflection with time. This is the usual method
of Poisson for solving a linear partial differential
equation by assuming a solution in the form of t-he product
of two functions,each of which is a function of only one
variable; namely,the time and the position oil the beam.

We shall rewrite equation (3) in the form

where

Its general solution is of the form: x-= Yi + Ya where
yl is the solution of equation (5!) , with the right-hand
side set equal to zero and ye the particular solution
satisfying the equation.

Let

Y1 = f(x) E(T)

Then, as is known, the homogeneous equation corresponding
to equation (31) breaks up into two equations of the form

#V -“k4f~0

where

The integral of the first of these eq-dations is

f(x) = .k~ cos kx + B1 Siii kx + Cl cosh kx -t D1 sinh kx (5)
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and of the second

5(T) = e-xlT (A. CoS pT + ~o Sin p~) (6)

wliere ‘.X = A Xx p Vt; and p is the natural frequency
,. 1 2m aa

of the tail.
acy

It is seen that for positive values of ---
a~

the free vibrations are damped and for negative values -
that is, for at > at cr they are not ‘daaped.

● The coefficients of expression (5) are determined
fro~i the boundary conditions which they must satisfy:
namely ,

for X=o,

x= L,

(7)

leading to a transcendental equation of the form

COS kt cosh kt = -1 (8)

from which are obtained the following values of kt
characterizing the frequericies of vibration of the beam:

1.875 4, 694 7,885 lo.9b

It is aecessary to poi~it out one assumption which was
made in t-he above discussion; namely, that the modulus of
the velocity was equal ~o the v’elocity at infinity V.
The error involved. is of the order of the square of a small
value (A2a). This assumption will also ap”oly in what
follows.

The particular solutio~ of the nonhomogeneous equation
is sought in the form

‘l’/eset

. ... . .,
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Equation (31) then becomes

~IV ~ + a,f(x) ~-t-cf~ = k. V2 sin WT = po(x, ~) (lo)

The right-hand side, in general, is also a function
of the time and of the coordinate of the beam axis and,
as is known from the general theory, it may be assumed in
the form of a product

po(x,~) = f(x) H(T) (11)

Substituting the above equation in (10) and dividing by
f(x), we obtain

where the equation ~IV -k4f=G was m=de use of for
determining yIVt

Setting

c= A cos WT -i-I! sin WT’ (13)

we obtain
.
~ = -Ah)sin LOT + B(.ocos W’T; ‘t=- Ak)a cos (J.)T- IKIJ2 sin W7

Substituting (13) in (12) and equating the coefficients
of the sine and cosine terms, me obtain the system

..

-al A@2+cBco+k4A=0 \

-Ba2w2-cAw+k43 =const=h J

. or

A (k* - a2@2) -t Ilcti= O, -Acw+ B (k4- a2w2) = h

whence

hc w
4

‘Q(IX -
A=

a= W2)——_——- ——_.-—_—--———- B= --————————- -——-————
(k4 - a2m2)2 + C2W2; (~4 - a2m2)2 + c2w2

(14)



16

We assume

It is then

u=

whence

Ya = f(x) U sin

NAC.A.Technical Memorandum No. 1041

A= Usinb, B= Ucos5

readily seen that

J-p’+-@ . h.-———. —- —--— ——
-——-—--..———-——

(15)

(WT + ~) = _--~@k -------- sin(~T + b ) (16)

Jr
--—————-————.——.

k4 - azw ‘)2 + C2!N2

The maximum deflection of the tail will occur for

k4 _ ~mw2
.

We shall then have

= f(x) h _ f(x) h
Y2 max ‘—==— – ‘———

J.-w cm

we obtain

f(x) h : (fx) h
Y2 m~x = —-—- = ————-—

[

—
~z~- ck’ %Z

2

Sinck h = constl V2; c = coEst~ v;

we shall have

(17)

(18)

(19)

that is, the value of the deflections in the case of res-
onance is determined n~t only by the e?.astic properties
of’ the tail but also by the velocity G.” the flow. For
this reason, it is no! possible, in general, to speak of ~
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the danger of resonance in buffeting without specifying
the velocity at which this resonance occurs.

The same result may be arrived at much more simply
hy applying the method of Galerkin to the solution of
equation (3). We shall first make two reservations which
follow immediately from the nature of the problem and
which very much simplify it. In the first place, we are
not required to find the complete integral of the equation
of motion for the simple reason that the buffeting occurs
at below-critical velocities for which reason the free
vibrations will he damped and will therefore not directly
concern us. We shall, therefore, seek only the forced
vibrations of a frequency equal to that of the acting
forces. In the second place, we shall not concern our-
selves with the investigations of the tail vibrations of
the hi~her harmonics, this case being of no practical
interest since it is then necessary to take into account
the formation of nodes. It is known that the frequency
of the vortices of actual airplanes lies within the range
of natural frequencies of the tail surface and for this
reason the attainment of flow frequencies equal to the
higher harmonics of the tail surface would require in-
creasing the velocity almost three times, which in the
given case is practically impossible. We shall, therefore,
consider the form of the forced vibrations as coinciding
with the form of vibration of the fundamental frequency.
The equation of vibration of the tail with variable cross
section and rigidity for the case of purely flexural vi-
brations is

Assuming that the functions Y(x) are already known, we
seek) according to the general theory, a solution in the
form of thb product

Y = f(x) t(~)

Substituting in equation (3i) and applying the method
of Galerkin, we multiply both sides of the equation by
f-.(x)dx,. ,integrate over the entire half-span, and obtain

.,

.l)

[

● acz ~v
.(J

-+~.–– t(x) fa(x)dx = A~~ P V2
r

t(x)f(x)dx (20)
~a . au

0, 0
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It is readily shown from the boundary conditions which f(x)
must satisfy that

Integrating by parts the integral on the left-hand side

The first term, on account of the boundary conditions, iS
equal to zero. Integrating the second again by ~arts, we
obtzin

Setting
1

‘Zfadx=a;
io‘1 G J

m(x)fl(x)dx= b;
o 0

1
13&

J
t(x)f’(x)dx=c,

~ae 1
da J

=#p~2 t(x)f(x)dx’=d.

o 0
equation (20) assumes the form

..
aE.(z)-+bE+ci=dsinwt;

(20’)

Assuming

E=~cosw+~sinwr,
we obtain

Equating the coelficiehts of the cosine and sine terms, we
find

()
A +—w’ +$zh=o;

)
—X;O)+E(L’ ~;.

[b (21)

whence
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Sett5ng ~=u.siil;; B=ucosz,

where U==W+ E’; x
tg8=z,

we obtkin y=j(x) “U:sin(oJ7+~).

wk.ere 6 Is vhe phase angle
1

Y=

(22)

where the expression

&f Zdx

io
El ~

c .3

im(x).pdx ‘P,’3ro

,(23)

gives t“he netural frequency of the flexural vibrations of
the beam at any cross section.

In the case of resonance, we shail nave
I

~ q
~aPv’ st(x)j(x)dx

AVif(x)j(x)dx

y.ax =f(~)
o

[ =f(x) ;, . (24)

1 J
}:YPV t(x)ya!x OJJt (X)f’dx

J

ii
“m(x)f’(x)dx

o Jiw’(x)dx w
o

But

hence equation (24) can be written in the form

(25)

(26)
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Tor El =
we obtain

Yma~ =

constl; m(x) = const=; t(x) = const~;

-L

f(x)A Vt

/
f(x)dx ..

——...————-.—————-————— -——.

/

f( )

——————.————

——

t ~fz(x)d$~::;;~~

o

const fV
= —.——————

f
i?——
m

that is, the same result is obtained as by the usual
classical solution by the method of Poisson. The sircplic-,
ity of the obtained formula is such that no explanations
with regard to the value of the individual parameters are
required. It is important to note only one point; namely,
that in the case of resonance the values of the deflections
do not depend on the aerodynamic properties of the tail
itself. This result follows from the assumption of the
stationary theory.

Case of Purely Torsional Vi-Erations

In the case of purely torsional vibrations, the above
line of reasonin~ reriains exactly the same as for the
purely flex-aral vibrations. We shali present only the
final result.

The equation of motion for torsionai v.i”~ration is of
the” form

Setting
9 = o(x) ~(T) (28)

and applying the method of Galerkin, we obtain

~ M (x) Q(x)dx sin (MT + c)
e = CP(x)———————————.————————-——.————-—————— ——-—-—.———.-—___

h;-:~$;-:-J-ig-:FF:~-:-:-:~~;>-:]-:-i~--
L

o
(29)
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As is seen from formula (29), the aerodynamic character-
istics of the tail surface itself affect the character of
the vibratiolis. in the first place, there is a decrease
in the natural frequency of the vi-bratioils by the amount

.
L

-—-——--———-————---- .

/

1
Im CP2d.x

o

that is, t;.ere is a dro~ also in the velocity at which
resonalice a-o-pears. in the second place, in the case of
resona~tce itself the deflectior~s, jil contrast to those of
the flexural vi~rations, will de~end on the aerodynewic
characteristics of the tail section, as is sllOWilby
equation (22).

111. TIZ3 CASE OF TWO DEGREES OF TREEDOM

As is ki~ow~~from the tileory of wirig vibration, vibra-
tions of a wifi~ with o~le de&ree of freedom are impossible,
the flexural vibrations necessarily gi.vi~l~rise to tor-
sional vibratioils aud vice versa, that is, the tail sur-
face vibrations Will alYJa:Ts be torsioilal-flexnral. Thi s
is due to the noncoincidence of tlie noii~t.sof application
of the elasticity and ~ilert.ia,forces. It is a ~U.estioi~
only of the relative iriloortan.ceof each of these tynes of
vibratioils if~the <,eneral s~’stem of vibration. Te shall
therefore cousiiler the motion for ~he cas:: of two degrees
of freedom, that is, silli”Ll~taneou~v~L”i)ratiOnin tOrSi.On

and b~i]dii.g.

The system of equations is of the. form
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where

This system of tv?o linear partial differential equations
may be integrated only approximately. As has already been
-~ointed out , the difficulty of integrating nonhomogeneous
equations is the same ss that for homogeneous, since the
problem in both cases reduces to finding the functions
Y(x), o(x) aild ex~anding them in absolutely and urliformly
conversing series in each case. The solution of’ this sys-
tem, we shall seek, iu the form

Su.bstitutin& these functions in the equations and multiply-
ing the first by f(x)dx, the second by cp(x)dx and inte-
&rating from O to t, we obtain

(33)

--- -

.

. .
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where

——..,lJEI ($J) ..; .,Fjm(x,Pdz

o 0

No. 1041

1

a13= —
J
nmj(x)dx;

o
1

dc J%=—$ PV’ t?(x)f(x) d~ tzlb= -~pvj,(:-$),(x,.,(x,d%
o 0

1 1
ac

%c J
=@V tf’dx;

J
a = p (x) f (x) dx; ,,l=j c,p(~ydx,

o 0 0
1 1

~
b,, = kf(x) dx; s 2)c

b13= Imqzdx; b14==-pv2
J
__!!ktzqzdx,

(1 o 0 da

‘dC

J
b,, =—p V — % t3N x;

da

\

4 d:

)

q’ d~
o 16*

since there is always a phase difference between the
forces acting on the tail and its displacements. Sub-
stituting these expressions in the obtained equations,
we shall have

all(7coswz+Ds]nwz)+a12 ~—w2Xcos uw—w2Zsinw~) +

Equating the coefficients before the same functions,
we obtain

23

–--—..-. .,.—-.. . --.. —. —-- -. .--. . .. . .... . ....— .-. ....- . . .-
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where

In the entire discussion abgve, it was assumed that
the functions f(x) and m(x) are known. Actually,
their determination presents one of the most difficult
problems of present day mathematics. There is a small
number. of particular cases for which these functions can
be given in strict form. In all practical cases, they
are generally found by approximate methods and the re-
sults later checked by experiment. In the case of forced
vibration there is one advantage; namely, that for the
determination of the amplitude it is not required to use
the initial conditions without which in the homogeneous
problem the amplitude cannot be determined.

As is known, we seek the solution of both the
homogeneous and nonhomogeneous equatione in the form of
the product
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For f(x), in both of the above cases, there are a suffi-
cient number of boundary conditions, but for t in the
case- of the homogeileous problem it is necessary to specify
iziitia.1conditioils and in the case of the nonhomogeneous
problem ! is entirely determine~ by the disturbance
forces. Thus, multiplication of the right-hand side by
any constant factor does not introduce any complications
‘in the determination of the arnplitude,and the computation
can alw”ays he carried throukh to the end. Thus, it is
‘possible to take Af(x) for f(x), since A can enter
in the coefficient ~,

As a first approximation, we assumed that the form
of vibration of the tail in the flow is the same as in the
case of vibrations of the same surface in a vacuum. on
the basis .of these assumptioils, the ‘buffeting computation
of the tail was made wit’h the data presented in the book
of E. P. G’ros$man (reference 10) on the assumption that
the wing chord was equal to 3 meters and the maximum angle
of attack that could arise from the effect of the wake was
equal to 5° for vibratiorl with two degrees of freedom.

The curves (figs. 6 and 7) of the chqnge of maximum
deflectioi~s and torsional an~,les theoretically o’utained,
show the interestirlg characteristic which: is observed also
in ~ractice; ilamely, that the forced torsional vibrations
start only when the frequencies of the disturbir~g forces
approach the frequeilcies of ti:e natural flexural vibratioils
of the tail, while the flexural vibrations strongly i.u-
Crease with illcre~se irl the flov~ velocity.

In the light of the theoretical results obtained, it
is us’eful to recall the followin~ fact. 1~1 consideriilg
the failure of the tail of the JU 13, the. tinslish investi-
gators arrived at the conclv.sion that the failure arose
from the flexural stresses. This is iildirectly confirmed
by the fact that the accideilt was caused by buffeting
since, as slsbwn by t’he comvutatio.ns, in buffetiilg the
flexural “vi.bra.tiomspretomifiate.

.,

IV. “EXPERI!iMiVTAL INVESTIGATIONS OF BUFFM?L’ING

IN-THE LABORATO-RY AT HIGH REYNOLDS iTUMB’ER

Buffeting investigations were carried out in the wind
tunnel on a model of an elastic tail placed in a disturbed

... ... . .... . .. .. . . .. .,-- .,..,,. ,., ...
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‘flow behind the wing. “Tl:e tests -[ere condvcted both on
aii isolated l:~ing’aildoil a combination of wiag and fuselage.
The model tail surface was a single spar airfoil ‘of sym-
metric section. As may be seen from the sketch (fig. 8), ‘

,

it is assei~bled in several sections iil such a manner that
the entire load is taken only by the spar with the skin
takiilg no” load. The model was~ moreover~ designed in two
variants which differed only in the niaterial of the spar,
o-ne ‘beiilgof steel and the other of duralumin. This model -
desi~~ was chosen :Tith a view to the requirement, not only .
of fixiilg the frequency of vihratiozi ‘but also of determin-
ii~g the order of aerodynamic loads a.ctiil~on the tail sur-
face. AS has already been pointed out, the investigations
of foreign laboratories suffered from the fundamental de- .
feet that they made use of a detector which having elastic -
properties very dissimilar to those of the wiilg could not
yield any iilformatioil with regard to the load. In our
case this problem was solved, though very approximately,
without disturbirlg the accuracy with respect .to the fre-
quencies. This is entirely uilderstandable since tails
working in the region below the stallin~ velocities will ‘
have ii~ free vi-bratiofis, but wiil accurately follor~ the
forced frequencies.

The dimensions of the tail surface are iiidicated on
figure 8. The fuselase was schematically represented by
a flat board 30 millimeters thick which was attached
directly to the ~iilg forming a right-angle joint.

In order to i~lclude the basic practical operating
coilditions, five such board fuselages were coilstructed
by which settings were obtained to correspond to the angles %
of attack of the wing of 0.5°, 10°, 15°, and 20°. Moreover,
such fuselages, ilot havins any elastic coni~ection with the
tail, made possible the determinatioil of only the purely
aerodyna.inic effect of the fuselage on the tail.

A slketch of the setua is shown on figure 9. The ver-
tical position of the tail vas chosen after a special test
in vhich the a..mlitudes of vi-Sration of the tig of the
tail were ob,serred for various vertical positions of the
tail surface. The plane of the upper edge of the wing
gave the maximum aaplitude. This agrees entirely with the
results af Duncan and the tail was therefore set at tk.e
level of the upper edge of the wing.
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Test Procedure

The object was t-o determine the frequency and ampli-
tude of the tail vi”~ration, The problem of the choice of
any particular method of obtaining the fundamental param-
eters depended naturally on the character of the vibrations
themselves, that is, whether regular or irregulars observa-
ble with the naked eye or not, and finally, on the number
of degrees of freedom possessed by the tail. For this
purpose, the vibrating tail was observed by stroboscopic
illumination. It was found that “oy a corresgondirig choice
of the stroboscope frequency the vibratiol~s conld be com-
pletely determined, Moreover, it was found that the tail
in the disturbed flow vibrated with considerable amplitude,
the vibrations being nurely flexur~l up to a. certain defi-
nite velocity and after this velocity had oeen reached,
being accompanied by torsional vi-oratious. This made it
possible to photograph the tail silrf~ce a~.cito determine
the maximum ar~plitudes from the fjlm. In this way, rather
sim-ple and at the same ti”me, suff.,iciently accurate appara-

- tus was chosen for measuring the f-.lndamental,parameters;
namely, the rotoscope for measvring the frecluencies and
the usual photo~raphic apparatus for tne am-plitudes.

.’

Results of Observations

The observations showed that at all an<les of attack
of the wing when tilere was no separation of flow the tail
did not vibrate. For the case of an isolated wing, for
example, the tail vibrations started at aw ~ aw cr. In
this case the tail vibrated at all flow ~elocities, in-
creasing with increase in the latter, the vibrations being
predominantly flexural. Torsional vibrations arise only
when the frequencies of the flow approach the flexural
frequencies of the tail, there beir~g practically no tor-
sional vibrations up to this momeilt, as was shown theo-
retically.

Figure 10 shows the curves of frequency against
velocity, As may “be seen, the points with sufficient
accuracy lie on a ,straight liilq-. It should be noted that
the straight line of v as,ainst V does not pass through
the origin of coordinates. This shows that at small veloc-
ities the law of variatioi~ of V with V ~~ill be differ- .

e-nt than iil the given case. We silall write the equation
of this straight, line

V = V. + k(v - Vo) r-
..

(

~.. ....................... ------- -

~A
—-...
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where V*, Vo are the initial frequency and velocity of
the flow.

Dividing both sides of the equat”ion by V we obtain

v v~ v
—= –-+k--~
Vv v

from which it is seen that for large values of the veloc-
ity the ratio v/~ is simply eo,ual to lk, the slope of
the line. From the value of k taken from the curve of
fi~ure 10 we compute st =0.1. For actual landing veloc-
ities the value of St may be taken approximately equal)
to 0.115 + 0.12.

i
It is evident that these resuits may be ,

made more accurate ‘~~hentests for the determination of
St are conducted for a large number of full-scale wings.

On figure 11 is glotted v/v against V. The fact
that the measurements obtained %y the stroboscopic method
qualitatively a<ree with the results of ottier aut~ors
lends su-oport to the assum~tion of full periodicity of
the disturbance forces behind the isolated wing. This is
a very important fact for the problem of buffeting. If
the forces vere not periodic it ~70uld not have been pos-
sible to a~2iy the stroboscope vhich operates accordiilg
to the harnocic lam. Logically, it could not be expected
otherwise, for ‘with a g,iven wing and at a given velocity,
that is, for constant conditions of stall, the time re-
quired for the full stalling process should not change.

“The curves of change of amplitude with velocity con-
firm the conclusions previously drawil since all the curves
show defiillte resonance states as would be ir(possible in
the case of irregularity of the disturbance forces siilce
the ilatural tail vibratio.ls are harmonic.

I!’igure12 skoms the curve of arli?litude agaizst veloc-
ity for - 2A0

%7 – and (YJt=0, 5°3 and 10o. The curves
for ctt=G aild 5° ~re of a character corresponding to
the general t~leory of forced vibrations. Yor at = 100

the curve differs sharply from the precediizg since the
stalling point is at at ‘~ 11O. It ~gpears that a chailge
in angle, of attack in the wake behind the wing alternately
brings the wing from the condition above to the condition
below the stall, and this explains the arbitrary character’
of the curve.
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Figure 13 likewise shows a siiarp difference in the
behavior of the curves for at = 0° and at = 10°.
Whereas for at = 00 the amplitude curve has its maximum
value; its minim.~~1value is at = 100. This is apparently
due to the decrease in the amplitude of the forces acting
oil the tail as a result of tlie transition of the tail sur-
face to the conditions beyond the stall. Figure 13 shows
the results characterizi~tg the behavior of the tail be-
hind a wing with larger chord than for the first case,
that is, figure 14. For this reason, resonance is reached
at larger values of tile veiocity. .Figure 14 shows com-
uarisoil curves for ●two tail surfaces with different stiff-
ness. These curves show that a simple cl.ange in the
stiffness not only changes the numerical value of the
ar~plitudes ‘out also sharply uodifies the character of the
vi>ration. For this reason, the question of stiffness is
of fuildainental importance in the buffeting theory.

Ail iiicrease in the wing dimensions and in its angle
of att-ack ‘has a great effect on the am-plitnde of the vi-
Oratioils. l?i~ure 15 &ives the results of tests on a wing of
c’herd 0.63 meter at ~w = 300 (tail with steel spar) which
Skiow that t~.e increase in the ai.mlitude with the velocity
follows, approximat ely,the cr.bic law.

Combination of Wing and i’usela~e

AS has already been stated, boards attached to the
miilg formii~s a right-anale intersection were used as fuse-
lages, five fuselages beiilg used to form models with wing
ailgle of attack of 0°, 5°, 10°, 15°, aild 20°. This made
it possible to include the entire range of practical
angles of attack.

From the work of a numtier of autfiors it has been
established tilat the initial separation of the flow due
to the iilterference between the wir~~ aild fuselage often
starts at a Wiilg arlgle of attack of 2° to 3° in tie case
of j.iltersectioils vritlzo-.l.tfairings. We viere guided by
these facts iil choosing sucil a Lumber of an61es of attack
for investigation.

Waen the tests were begun it was found that up to
alp = 159 inciusive, the tail surface does not vibrate and”
the silk string shows the absence of separation at the
iiltersection. Oilly at alv = 150 and at large velocities
is there formed at the wing and fuselage intersection a
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small breakdown region and slight vibration of the tail.
This is ‘explained, evi.dea,tly, by the st-raight line char-
acter of the contour of, our fuselage, that is, by the
absence of a pressure drop in the flow along the fuselage.
Tlie fuselage and wing having different profiles form dif- .
ferent velocity vectors at the same points of space in
tile region of the intersection. This leads to a disturb-
ance of the smoothness of the flow about the wing and
fuselage. In our case, the fuselage, not having any pres-
sure gradient and hence variable velocities along the
coiltour, does not disrupt the flow at the wing. We speak
here of the outer flow, of course, .as the boundary layer
in the region of the juncture undoubtedly increases in
thickness in the flow direction, but this, evidently, for .
such type of’ intersections, plays no iraportant part u-o to
stalling angles of attack. For am = 200 the tail
vibrates, as in the case of the isolated wi::g, in the
ra-nge beyond the stall.

Figures 10 to 16 show the frecue~icies and amplitudes -
plotted a~aii~st the velocity in co:~garison with the same
curves for the isolated wing. As may be seen, the very
interestin~ result is obtaijled that while the frequencies
are not a.ffect~d by tb.e presence of the fuselage the
amplitudes are strongly decreased. r,7~.lis meails that the
fuselage acts as a dai~ging device for the tail. Thus
the presence of the fuselage itself, from the point of-
view of buffeting, not only plays a negative Dart, cr.eatingq
vortices at the intersectioil but als”o a positive part in
damping the vibrations.

.,,,..

v. FoRcEs ACTING” oN THE TAIL ‘IN BUFFETING

We shall. try to answer the question with regard”to
the loads to which the horizontal tail surface is subjected
in buffeting. We shall first consider the following simple
problem. Let a single vortex with circulation r ai~d with
a forward velocity equal to the flow velocity move in an
infinite ideal f-low about a horizont~l tail of constant
chord. Assuming the path of the vortex as a straight line,
the scheme will be that shown iq. figure 17

where

o is the initial position of the vortex

so the distance of the tail from the point () in the
flow direction

.



!

,

/

I

,,

NACA Technical Memorandum No. 1041 31

ho is the distance of the tail from O along the vertical

s the runniqg coordinate of the vortex

The vortex will, of course, induce at the tail the
velocity vector AV which will vary both in magnitude
and direction in the course of motion of the vortex. It
is required to find the lift force on the tail in this
case.

We consider the expression for the lift in the gen-
eral case of forward motion. The lift, as is known, is
given by

x
p-rt ‘td(Va)

P=–~–l-~y+4v2a– ~: J

U(p)dp
———-.———————.——.

–Jx -
.—————— —————-.—--

e~+t(x” PO)1(34)
L

X.

~~here u(p) is the intensity of the vortex sheet spring-
ing from the trailing edge and generated by lines of
velocity discontinuity. In the case of nonstationary
motion the circulation at the tail varies and therefore,
in order ‘co satisfy Kelviills theorem of the constancy of
the circulation in time, it is necessary that a vortex
be shed with circulation equal to the increment in circu-
lation about the tail but of opposite sign. Schematically
this may be represented as shown in figure 18, where

~ is the starting point of the nonsteady motion

ux the distance traversed after the start of the motion

$ the running coordinate

Formula (34) thus consists of two parts: namely,
the Joukowsky terms and the terios due to the nonstationary
character of the motion. As shown by Wagner (reference
11), the value of the latter integral is small by .compari-
SOQ with ‘tb.eremaining terms and may be neglected without
too gre~t an error. Moreover, it always acts to reduce
the total lift force so that neglecting it wi~l be on the
favorable side as regards the wing strength.

~ilgeneral, u(p) is found from the solution of an
integral equation of the form

,,,,,,,.,. ,,, ., ,,. !. ,, . ...!! . . !! !....... . . . . . . . . . . . . . . ..--—.— —.. . . . . . .-- —-. —.-— — .—--. ———. —.—
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d (Va)
it remains to consider the term ——.—— We write it

d~ “
in the form

d(va) =v++Gdv———
dT dT z

(35)

Assuning the velocity of the flow constant we obtain

d.(Va) ~r g..

———— =

dT dT

T’%e lift force will then be

It i“snecessary to determine
da

Frorl a consideration
XT “

of figure 17 we may write

-mt

Substituting the above in (36) we obtain

r so–s
r.= ——— ———___.——.-——

21?V (s0 – S)2 + hoa

whence

r
ho2] ds[+-2( s.–s)2–(s0– s)’- —

c1a dT
—— = ——— —.—-————— -——____—__— —___—_—
d,T 21-rv [(SO->5)ti~ h02~2 .-

(36)

(37)
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d-a r (sO –s)2 – h02
—=— ——— —— —
d-r 21-r [(s0 - s) ‘–+ h~a ‘“

(39)

Since ~Ie are interested only in the maximum value of the
lift force we shall find the value of S for which

da
G

will be a maximum for which purpose we differentiate

(39) with respect to S denoting :$ by d::

r –[(So–S )’+ho]22(So– S)+2 [(So–S)2+ho E]2(So–S) [(So- S)2–ho2]— ——. —....————._ ——.——— ———_____ ———. — ———- .
211 [(So– S)’+ho2]4

Xquating the numerator to zero we obtain

[(So-S )`+l~02]2(So-S) =[(So-S )2-ho 2]4[(So-S )2+ho2] (So-S)

(so–s)~+hoz =2( So-S )2-2h02

SO–S= + &h. (40)

Suhstitut in& (40) in (39)

(44)

T1.e expression for the maximum lift force is written as

But I’ is connected with the angle of attack by tile.
follow iilg expression

(So–S)2+ho’
~= 2’,TVm—c —— __

s O-s

Substituting the above in”(41)

(41)

(42)

(43)
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( 1Pmt 4~2a+ tv -1? —. Pamax = 4 )
= pntmL+J- plltv’a+ (45)

2~h0 86 0

Pma x = l?~t
(

t \ll+–L—
8& ho)

(46)

wh ere F’S* is the lift for steady motion.

The result is thus obtained that the lift of the
tail depends on the dista,nce from the vortex lines. The
nearer the tail is to the vortex lines the Zi-eater the
lift force on it for the sane angle of attack. It is
clear that the case ho = O has no inmediate physical
significance es the tail can never be situated in this
position in view of the fact that the tail in turn induces
at the vortex a velocity which causes the vortex to deviate,
a fact which for simplicity we neglected to take into con—
sideration. Figure 19 shows the cl.~rvesof vibration am–
plitude against the vertical position of the tail. It is
seen that the maximum deviations lie in the plane of the
upper edge of the wing in the flow direction. This may be
explained by the fact that the vortices shed from the
upyer edge of the wing travel approximately in the same
plane, a fact which well confirms the assumption made.

On the basis of the obtained formula and the experi–
ments of Duncan it ma:i be stated that the separating vor-
tex travels along a practically straight line. The dif–
ficulty may arise that vortices are shed not only from
the up~)er edge of the wing but also from the lower but no
such increase in the ainplitude of the vibration is ob—
tained in the plane of the lower edge. The reason is that
the vortices springing from the upyer and- lower edges do
not produce the same effect on the tail. Having oppositely
directed circulations one of the vortices acts to reduce
the dynamic load while the other acts to increase it. The
theorem is proved in mechanics that for dynamic loading
the deformations may attain double the value of those for
static load but for dynamic unloading they can never exceed
the static load deformations. In general the tail may be
loaded not only by the vortices springing from the upper

edge but by those froi~lthe lower edge depending on the
angle of attack of the tail itself. In the given tests due
to the downwash of the flow behind the wing the tail was at
a negative angle of attack. Hence it would be more correct
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[b to say that the line of dangerous buffeting lies in the

II
p-lane of the edges -of .tke wing if it is assumed that the

!
vortices travel approximately in these planes in the flow
direction.

~

1

‘, “l?igures 20 to 26 give the force curves obtained from

i
the tests. As has already bean pointed out the maximum
value of the deflections was determined by a photographic
camera and from these values the forces were determined

~ ?:j::::~$?:i?!?~?%::::q

~(x)= –—–––––––––—–—–––––––— ——— _.— _———— ______ —___
1

1!
} f(x) P2V{ t(x)f(x)dx

whence
AP = k(X) pV2St

where St is the area of the

measured. amplitude of the tip
of nondimensional coefficient

c = ——Ap
c;Tmax PTT2%

The curves show that the

tail surface and ym the

of the tail. We make use

= k(x)

c
iOO ?ercent

‘max

variation of the ac~ing
forces l.~iththe velocity for all cases considered is–sub-
jec% b~ a ?Lefinite la~~. The coefficient C assumes vari-
ous values liOt always reg-cilar. ThiS.is.explained partly
by the fact that a sinusoid does not accurately ??e_p??eSellt

the actual character of the varying forces which act im–
pulsively anti strictly speaking should be represented ?)y
a I?ourier series. As may be seen the ov.er.loadsmay reach
100 percent and more depending on the characteristics of
the wake and the angle of attack of the tail. Theoreti—
tally the overloads can be of any order of magnitude from
G to m. The theory is here important on account of the
fact that it gives an explanation of the causes giving
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rise to these loads since the results of the usual wind
tunnel tests and of the Joukomsky theory do not throw any
light on the causes giving rise to these overloads. A
fundamental factor the effect of which is considered by the
theory here presented is the rate of change of the angle
of attack of the tail. A vortex traveling toward the tail
does not simply vary the angle of attack but does this at
a definite rate which is determined by the magnitude of the
flight velocity, the circulation of the vortex and the dis-
position of the tail surface relative to the vortex path.
The physical theory concerns itself with the explanation
of the effect of these factors. T~te infi-nite increase in
the force for ho = O must be considered S,S the naximuin

overload of the tail surface in this position, similar to
the infinite velocity at the shary edges in the case of
the wing theory.

CO17CLUSIO??

We have considered a very simplified scileme of a com–
plicated phenomenon which is often a source of worry to
designers and which up to the preseilt has received no
fundamente,l solut-ion. In this very simple scheme it was
found that the isolated wing gives rise to purely periodic
disturbances which can be represented by a simyle series
of trigonometric functions, It is shown that the tail too
vibrates periodically with amplitudes increasing with the
velocity corresponding to the laws of the general theory
of forced vibrations in a resisting medium,

Consideration was given to the character of the loads
to which the tail surface was suljected in the wake of the
wing. It was found that they are fundamentally determined
by

a) 7he ratio of t:.e frequency of the flow to the
natural frequency of the tail surface;

b) Tile magnitude of the flow velocity

c) The vertical position of the tail surface rela—
.tive %he wing

d) l’he amplitude of the disturbance fo~ces
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Depending on the character of the combination of. all
these factor-s the tail may be brought into a critical
buffeting condition and in this connection the conclu—
sion of Blenk with regard to the impossibility of fail–
ure of the Junkers Ju 13 due to buffeting does not appear
to be an entirely justified assertion. At the value St =

0.12 obtained in our tests the Junkers airplane was in a
resonance state at large velocities, that is, simultaneous
action of the above factors a and “b was obtained.

The actual character of the tail vibrat-ion on a real
~~irplane is very compl;;:tgd~ugs~:;; which is”quitc under-
!~tandablc since it is . of the tail vibra—
j~ioils alone but of the vibrations of the complete mecha.ni–

I &al system including a very large n-~mber of the structural
\details.

The important question is how to eliminate buffeting.
on the actual airpla~.e. Experiment shows tha,t a very
large ~zumbcr of structural details of a size comparable
with that of the tail surface may form a disturbing wake
acting on the tail surface and. Civing rise to buffeting
at v,arious velocities of the air~lane. The factor” of
comparable size is here emph,asized=since for some reason
it is C-dStOiilLl,l”y to assurle in usual practice that even ,a
s,nall “Dolt on the upper surface of the wing may give :ise
to dangerous buffeting, In a wind tuilnel at aw = 10

on ,2wing of 600—millimeter chord plastic objects of
various shapes of dimensions 100 to 150 millimeters were
attached and no buffeting was observed.. This is explained
by the fact that the frequencies of the vortices spring—
ing from such sm,all obj ec’cs many times cxceecl the natural
frequency of the tail iand their amplitudes in the first
place are small in magnitude and in the second place do
not reach the tail, being dissipated completely by diffu–
sion. In order to check this the following test was made.
A plate of 125 millimeters width was placed ahead of
the tail the latter vibrating with appreciable amplitude.
These vibrations dccre~.scd with increasing distance from
the plate and ,at a d-istance of about 1 millimeter from the
tail they vanished completely.

Thus in considering the orif:in of the buffeting it
is necessary to pay attention to structural details of a
greater’ order of magnitude than small excrescences. If
buffeting occurs in landing the source of the trouble in
most cases is to be found in the wing attachment to the

11~” -,.,,- .,,.,-,,-—,,,,,,,i.,,,,,,.,.,.,,..,-—.——..,——.,.. -.— —-. ——.—..—
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fuselage. !i!he-~easures to be taken for eliminating %uf—
feting in this case are well known to all designers (the
use of various kinds of a fairings, slats, flaps, etc., the
action of which leads either to a suppression of the flow
breakdown at the intersection or to a reduction of the
likelihood of resonance %etween the vortices and tail.
It is here necessary to ‘oear in mind first that fillets
often have an unfavorable effect on the speed characteris—
tics of the airplane, and secondly that buffeting arising
in the presence of fillets often is more dangerous than
without then. This is well illustrated on the curves of
Duncan (fig. 27) which give the changes ir~anplitude for
various combinations of fillets with other types of de—
vices.

In general the means taken for eliminating buffeting
may be classified into three groups:

1. Removal of the causes producing buffeting, that
is, avoidance of the possibility of flow breakdown at the
wing.

2. Loc”ation of the tail in the least dangerous pcsi–
tion.

3. Change in the elastic properties of the tail so
that its natural frequencies will not be resonance fre–
quencies .

!l!hefirst grcup, has already been discussed. The
second group requires that the tail surface be located
as far as possible from the path of the vortices which
lie approximately in the plane of the wing edges. This
can always be done by sketching the path of the vortices
on the drawiilg for va,rious angles of attack and taking
account of the actual conditions of flow alout a given
wing system.

The means for eliminating buffeting includ-ed in the
third group are very often applied in practice in the
final design of an airplane. It is necessary in many
cases to vary the postion of the tail surface several
times or strengthen it by various supports which is often
done llindly without any preliminary ,computations. The
values of St given in the present paper would seem to
offer a cer-tain usefulness to the designer by enabling him
to determine in advance the required order of natural
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~ frequencies of the tail surface, that is, its elastic
+;_. properties. ..
T
‘---:$..k-.~_ Translation by S. Reiss,-:

National Advisory Committee‘.
for Aeronautics.
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Figure l.- Vibration of tail and silk thre~ during gliding of the airplme. Ordinates
@ve deflection of the tip of the stabilizer and angles of inclination of

thread. Abscissas give time in seconds. ~ horizontal tail SUrfaCe; ––——— OUter

silk threads; inner silK threads.
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Figure 2.- Gurves of St and Cx against Re.
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Comparison of wakes obtained witlna pitot tube and a
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Figure 5.- Curve of Cy against u.
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Figure 8.- Sketch of model tail.

Figure 6.- Maximum angles of twist of tip
of tail.
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Figure ‘7.-Maximum deflections of tip of tail.
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Figure 9.- General set-up. Dotted line indicates the board fuselage.

I?i=gure10.- Curves of frequency against velocity for wing angles of attack
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Figs. 12,13
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Figure 12.- Maxirnumdeflections of tail surface for CLw-‘23°, at=50 and 10°,
wing chord 0.6 m.

a, =23° b=6~0
w

y,cm

10

0.5

5 10 15 20 25 30 Vtm/sec

Figure 13.- Maximum deflections of tail surface for Gw=230, ut=~o and 10o,
wing chord 0.63 m.
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Figs. 14,15
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Figure 14.- Maximm amplitude of deflection of tips of tails
of various stiffnesses.
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Figure 15.- Deflection of tip of tail for ~=30°, wing chord
0.63 m, u~=oo.
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Figure 16.- Comparison curves of deflection of tip of tail for isolated
wing and for combination of wing and fuselage.
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Figure 19.- Variation of maximum amplitude of deflection with vertical
position of tail. ,
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Figure 20.- Curve of amplitude of forces against velocity for various”angles

Figure 21.- Comparison force curves for tail with isolated winq and with—
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Figure 22.- Force curves for various angles of attack of the wing.
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Figure 23.- Force curve for wing of chord 0.63 m. Angle of attack of tail
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Figure 25.. Coefficient curves for isolated wing and combination of wing
with fuselage.
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Figure 26.. Coefficient curve for wing angle of attack of 30°, chord 0.63 m.
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Fig. 27

Figure 27. - Comparison of buffeting intensity for various devices to re-
duce buffeting. Ordinates give inclination of detector from

mean position in radians, abscissas give anglo of attack of wing.
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